StoryTitle("caps", "Sunbeams and the Work They Do") ?> InitialWords(35, "Who", "caps", "dropcap", "noindent") ?> does not love the sunbeams, and feel brighter and merrier as he watches them playing on the wall, sparkling like diamonds on the ripples of the sea, or making bows of colored light on the waterfall? Is not the sunbeam so dear to us that it has become a household word for all that is merry and gay? and when we want to describe the dearest, busiest little sprite amongst us, who wakes a smile on all faces wherever she goes, do we not call her the "sunbeam of the house?"
And yet how little even the wisest among us know about the nature and work of these bright messengers of the sun as they dart across space!
Did you ever wake quite early in the morning, when it was pitch-dark and you could see nothing, not even your own hand; and then lie watching as time went on till the light came gradually creeping in at the window? If you have done this you will have noticed that you can at first only just distinguish the dim outline of the furniture; then you can tell the difference between the white cloth on the table and the dark wardrobe beside Page(36) ?> it; then by degrees all the smaller details, the handles of the drawer, the pattern on the wall, and the different colors of all the objects in the room become clearer and clearer till at last you see all distinctly in broad daylight.
What has been happening here? and why have the things in the room become visible by such slow degrees? We say that the sun is rising, but we know very well that it is not the sun which moves, but that our earth has been turning slowly round, and bringing the little spot on which we live face to face with the great fiery ball, so that his beams can fall upon us.
Take a small globe, and stick a piece of black plaster over England, then let a lighted lamp represent the sun, and turn the globe slowly, so that the spot creeps round from the dark side away from the lamp, until it catches, first the rays which pass along the side of the globe, then the more direct rays, and at last stands fully in the blaze of the light. Just this was happening to our spot of the world as you lay in bed and saw the light appear; and we have to learn to-day what those beams are which fall upon us and what they do for us.
First we must learn something about the sun itself, since it is the starting-place of all the sunbeams. If the sun were a dark mass instead of a fiery one we should have none of these bright cheering messengers, and though we were turned Page(37) ?> face to face with him every day we should remain in one cold eternal night. Now you will remember we mentioned in the last lecture that it is heat which shakes apart the little atoms of water and makes them float up in the air to fall again as rain; and that if the day is cold they fall as snow, and all the water is turned into ice. But if the sun were altogether dark, think how bitterly cold it would be; far colder than the most wintry weather ever known, because in the bitterest night some warmth comes out of the earth, where it has been stored from the sunlight which fell during the day. But if we never received any warmth at all, no water would ever rise up into the sky, no rain ever fall, no rivers flow, and consequently no plants could grow and no animals live. All water would be in the form of snow and ice, and the earth would be one great frozen mass with nothing moving upon it.
So you see it becomes very interesting for us to learn what the sun is, and how he sends us his beams. How far away from us do you think he is? On a fine summer's day when we can see him clearly, it looks as if we had only to get into a balloon and reach him as he sits in the sky, and yet we know roughly that he is more than ninety-one millions of miles distant from our earth.
These figures are so enormous that you cannot really grasp them. But imagine yourself in an express train, travelling at the tremendous rate of Page(38) ?> sixty miles an hour and never stopping. At that rate, if you wished to arrive at the sun to-day you would have been obliged to start 171 years ago. That is, you must have set off in the early part of the reign of Queen Anne, and you must have gone on, never, never resting, through the reigns of George I., George II., and the long reign of George III., then through those of George IV., William IV., and Victoria, whirling on day and night at express speed, and at last, to-day, you would have reached the sun!
And when you arrived there, how large do you think you would find him to be? Anaxagoras, a learned Greek, was laughed at by all his fellow Greeks because he said that the sun was as large as the Peloponnesus, that is about the size of Middlesex. How astonished they would have been if they could have known that not only is he bigger than the whole of Greece, but more than a million times bigger than the whole world!
Our world itself is a very large place, so large that our own country looks only like a tiny speck upon it, and an express train would take nearly a month to travel round it. Yet even our whole globe is nothing in size compared to the sun, for it only measures 8000 miles across, while the sun measures more than 852,000.
Imagine for a moment that you could cut the sun and the earth each in half as you would cut an apple; then if you were to lay the flat side of Page(39) ?> the half-earth on the flat side of the half sun it would take 106 such earths to stretch across the face of the sun. One of these 106 round spots on the diagram represents the size which our earth would look if placed on the sun; and they are so tiny compared to him that they look only like a string of minute beads stretched across his face. Only think, then, how many of these minute dots would be required to fill the whole of the inside if it were a globe!
One of the best ways to form an idea of the whole size of the sun is to imagine it to be hollow, like an air-ball, and then see how many earths it would take to fill it. You would hardly believe that it would take one million, three hundred and thirty-one thousand globes the size of our world squeezed together. Just think, if a huge giant could travel all over the universe and gather worlds, all as big as ours, and were to make first a heap of merely ten such worlds, how huge it would be! Then he must have a hundred such heaps of ten to make a thousand worlds; and then he must collect again a thousand times that thousand to make a million, and when he had stuffed them all into the sun-ball he would still have only filled three-quarters of it!
After hearing this you will not be astonished that such a monster should give out an enormous quantity of light and heat; so enormous that it is almost impossible to form any idea of it. Sir Page(40) ?> John Herschel has, indeed, tried to picture it for us. He found that a ball of lime with a flame of oxygen and hydrogen playing round it (such as we use in magic lanterns and call oxy-hydrogen light) becomes so violently hot that it gives the most brilliant artificial light we can get—such that you cannot put your eye near it without injury. Yet if you wanted to have a light as strong as that of our sun, it would not be enough to make such a lime-ball as big as the sun is. No, you must make it as big as 146 suns, or more than 146,000,000 times as big as our earth, in order to get the right amount of light. Then you would have a tolerably good artificial sun; for we know that the body of the sun gives out an intense white light, just as the lime-ball does, and that , like it, it has an atmosphere of glowing gases round it.
But perhaps we get the best idea of the mighty heat and light of the sun by remembering how few of the rays which dart out on all sides from this fiery ball can reach our tiny globe, and yet how powerful they are. Look at the globe of a lamp in the middle of the room, and see how its light pours out on all sides and into every corner; then take a grain of mustard-seed, which will very well represent the comparative size of our earth, and hold it up at a distance from the lamp. How very few of all those rays which are filling the room fall on the little mustard-seed, and just Page(41) ?> so few does our earth catch of the rays which dart out from the sun. And yet this small quantity (1/2000-millionth part of the whole) does nearly all the work of our world. Footnote("These and the preceding numerical statements will be found worked out in Sir J. Herschel's \"Familiar Lectures on Scientific Subjects,\" 1868, from which many of the facts in the first part of the lecture are taken.") ?>
In order to see how powerful the sun's rays are, you have only to take a magnifying glass and gather them to a point on a piece of brown paper, for they will set the paper alight. Sir John Herschel tells us that at the Cape of Good Hope the heat was even so great that he cooked a beefsteak and roasted some eggs by merely putting them in the sun, in a box with a glass lid! Indeed, just as we should all be frozen to death if the sun were cold, so we should all be burnt up with intolerable heat if his fierce rays fell with all their might upon us. But we have an invisible veil protecting us, made—of what do you think? Of those tiny particles of water which the sunbeams draw up and scatter in the air, and which, as we shall see in Lecture IV., cut off part of the intense heat and make the air cool and pleasant for us.